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Previous studies have shown a strong tendency toward overconfidence in 
peoples’ probability assessments. Even experts are often poorly calibrated. 
The present paper suggets that quality of calibration is largely determined by 
the extent to which the cognitive processes required for repeated probability 
assessments are similar. One task that satisfies this condition is the game of 
bridge in which accurate probabilistic assessments are required for good 
playing. Two experiments were conducted in a natural setting of a tournament 
in which subjects were asked to assess the likelihood that a final contract 
(reached during the bidding phase) would indeed be made. Expert players 
were almost perfectly calibrated whereas amateurs were overconfident. The 
differences between expert and amateur players are discussed, and some 
guidelines for training procedures for calibration in general are pro- 
posed. 0 1987 Academic Press, Inc. 

A robust finding in the decision literature concerns the so-called over- 
confidence and miscalibration phenomena. A judge is said to be well cali- 
brated if “over the long run, for all propositions assigned the same proba- 
bility, the proportion true is equal to the probability assigned” (Lichten- 
stein & Fischhoff, 1977, p. 161). Much of the research on calibration 
shows that people are poorly calibrated (Lichtenstein, Fischhoff, & 
Phillips, 1982); that is, their subjective probability assessments deviate 
considerably from the true probabilities. In particular, they most often 
express overconfidence by assigning probabilities higher than warranted 
(e.g., Fischhoff, Slavic, & Lichtenstein, 1977; Lichtenstein & Fischhoff, 
1977). 

What is implied when we say that a person is poorly calibrated? Ac- 
cording to the definition of Lichtenstein and Fischhoff (1977), calibration 
is measured in the long YU~ and as such has a “frequentistic” interpreta- 
tion (see also Lindley, 1982) that is based on repeated events. 

Previous researchers, especially those in the Bayesian tradition, have 
viewed subjective probabilities as a property of the judge. Notwith- 
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standing that statement, the extent to which a person is well calibrated 
may depend, among other things, also on the nature of the stimulus mate- 
rial that is being judged. In particular, given a set of repeated events or 
items, one can distinguish between what may be called related and URre- 
lated items. For example, much of the research on calibration showing 
overconfidence has employed general knowledge questions like “What is 
the population of Peru?” “ What is the capital of Nepal?” or “What is the 
longest river in the world?” For this type of stimulus material the sub- 
jects’ knowledge of one item is independent of their knowledge of an- 
other item. When no information (knowledge) can be inferred from one 
item and transferred to another one we deal with unrelated items. 

When calibration of probabilities is involved, the question is to what 
extent are items in a given set sufficiently related so that knowledge 
about the occurrence (or nonoccurrence) of some items can be used for 
assessing the probability of other items in the same set. It is important to 
emphasize that related items do not have to be dependent. For instance, 
consider a bridge player who has been exposed to thousands of bridge 
hands. The different hands are strictly independent and yet are related 
items. 

The judgment of the extent to which items are related, in the above 
sense, is a subjective one and refers to a great extent to the similarity in 
the subject’s mental processes when reacting to one item or the other. In 
certain tasks the items are clearly related in that they require similar re- 
petitive cognitive processes to be applied. Under such conditions 
learning may take place and “good” calibration can be achieved. 
Weather forecasting may serve as a good example for such a task. When 
meteorologists state that there is a 60% chance of rain they actually mean 
to say that 60% out of all previous cases (items) with similar weather 
conditions (as reflected in barometer readings, wind directions, satellite 
pictures, etc.) resulted in rain. Weather forecasts form related items and 
thus meteorologists can benefit from their previous experience and be 
well calibrated. 

I propose to distinguish between different types of calibration tasks 
depending on the extent to which items are related (as explained above) 
and require similar cognitive processes. Unrelated items require different 
cognitive processes for each item so that feedback is ineffective in cali- 
brating those processes. When, however, items in a task are related, 
there are grounds to develop inferential processes that would lead to prob- 
abilistic notions in terms of relative frequency and long run consider- 
ations. I suggest that such conditions are necessary (though not suffi- 
cient) for subjects to be well calibrated. Note that the notion of related 
items as employed here is subjective and is measured on a continuous 
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scale. The higher the degree of relatedness, the better the grounds for 
developing good calibration. 

To obtain good calibration when items are related, two additional re- 
quirements have to be satisfied: Feedback has to be provided, and suffi- 
cient practice has to take place. Feedback to unrelated items is of little 
use, since it carries no information with regard to other items (events), 
and hence does not enable one to develop inferential processes and a 
prediction model. Feedback to related items, in contrast, provides infor- 
mation that in the long run may, if applied correctly, be used for assess- 
ment of the relevant variables and consequently to revision of probabili- 
ties of future events. The excellent calibration performance by weather 
forecasters (Daan & Murphy, 1982; Murphy, 1981; Murphy & Winkler, 
1984) can probably be accounted for by, among other things, the prompt 
and continuous feedback as well as by long enduring practice. 

The role of practice and training is not yet clear, and the results of 
calibration studies with experts are quite varied. For instance, Lichten- 
stein and Fischhoff (1977) asked graduate students in psychology to re- 
spond to 50 two-alternative general-knowledge items and 50 items cov- 
ering knowledge in psychology (in which they were supposedly experts). 
The two subsets were of equal difficulty, and calibration was poor and 
similar for the two tasks. Also, several studies (e.g., Christensen-Sza- 
lanski & Bushyhead, 1981; Lusted, 1977) have shown physicians’ proba- 
bility assessments of their diagnosis to yield poor calibration. Among 
studies on experts, only weather forecasters exhibit superb calibration. 
These same meteorologists, however, are not better calibrated than stu- 
dent subjects when the task is general knowledge questions (Keren, 
1985). This suggests that calibration by experts may be task specific. To 
assess, however, the role of expertise in calibration one needs a control 
group of nonprofessionals. Most of the calibration experiments on ex- 
perts lack such a control group. 

To assess the contribution of expertise I have chosen to study bridge 
players with different levels of expertise. The advantage of choosing such 
a task is that the difference in expertise arises in a natural way rather than 
being manipulated in the laboratory. The study was conducted in a nat- 
ural setting, a tournament, with highly motivated subjects. Using the 
game of bridge has additional advantages: The items, namely the dif- 
ferent games played by the subjects (both during the experiment as well 
as in their previous history), are related items with continuous feedback 
provided after each game; hence, we would expect bridge players to be 
well calibrated. This expectation is also based on the fact that probability 
assessments are a natural and integral part of the game. In other words, 
good calibration is a necessary requirement for a good bridge player. 
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Previous research (Lichtenstein et al., 1982) suggests that quality of 
calibration, and in particular overconfidence, are strongly related to task 
difficulty. As tasks get easier, overconfidence is reduced. One may re- 
verse the question and ask whether for a given task where difficulty (in 
terms of task requirements) remains constant, does improvement in skill 
(i.e., expertise) also imply improved calibration? The present study 
makes an attempt to answer this question. 

A detailed description of the game of bridge is beyond the scope of the 
present paper (see Epstein, 1967; Goren, 1952; Kaplan, 1963). It will be 
sufficient to mention here a few aspects of the game that are relevant for 
the present study. Briefly, the game consists of two parts: The bidding 
and the play. The bidding is a communication process which occurs 
under certain sequential restraints and with a limited vocabulary, and ter- 
minates with a final contract. The final contract is a bet, by one of the 
two teams, to take a certain number of tricks (with a particular suit as 
trumps) during the second phase of the game called the play. The goal of 
the team that declared the final contract (the offense) is to make as many 
tricks as promised or even more. The other team (the defense) is trying to 
prevent the fulfillment of the contract. After the bidding is over, one of 
the defenders leads a card, then all the cards of one of the players in the 
offense are laid down on the table and become the dummy. Then the play 
follows, each team trying to take as many tricks as possible. 

The bidding phase is aimed at reducing the uncertainty but can never 
eliminate it completely. At the end of the bidding the declarer (the player 
of the offensive team who is actually playing) faces two uncertainties: 
The partner’s exact card combination is not yet known, nor is that of the 
defense. The second type of uncertainty concerns the manner in which 
the defense team is going to play. Obviously, the final outcome of the play 
is determined by the way in which both teams play. Given these uncer- 
tainties, players have to make accurate probability assessments of 
making a certain contract, before they bid. Thus, good bridge players 
have to be well calibrated. The following experiments were designed to 
test this hypothesis. 

EXPERIMENT 1 

Method 

Subjects. The subjects were 16 highly experienced players (8 pairs) 
from one of the top bridge clubs in The Netherlands. All have partici- 
pated in national tournaments and several of them have participated in 
international competitions as well. 

Procedure and stimuli. The experiment was conducted during an eve- 
ning tournament organized by the experimenter. There were four tables 
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(two pairs for each table) and 28 decks of cards, each constituting a game. 
Each deck was divided in advance into four “hands” of 13 cards each, 
and remained the same for the entire tournament. The 28 decks were 
divided into seven rounds of four games. Each pair played a round (four 
games) against each of the other seven pairs according to a predeter- 
mined order. Thus, each of the 16 players played 28 games during the 
tournament (to total 448 observations) and each game was played four 
times. Financial prizes were awarded to the first three pairs. The rest of 
the players received a fixed amount of 20 Dutch guilders each (approxi- 
mately $7). 

Before the tournament started the subjects were given the following 
instructions: They were told that at the end of the bidding and before the 
play started (i.e., also before the dummy cards were laid down) they were 
to estimate the probability that the final contract would be made. Proba- 
bility statements were made by using numbers between 0 and 100 (per- 
centages). Subjects were instructed that 100 meant they were absolutely 
sure that the contract would be made. Similarly, 0 meant that they were 
absolutely sure that the contract would fail. Further, they could use any 
number between 0 and 100 to indicate their confidence. Low ratings 
meant that the contract was likely to fail and high ratings meant they 
thought the contract would be made. A 50% rating meant they believed 
there was an equal chance of success or failure of the contract. Each 
player received a sheet with the games numbered 1 to 28 and was asked 
to provide a probability assessment after the bidding phase of each game. 
Players were required to make these assessments individually and refrain 
from any exchange of information except that allowed by the bidding 
rules. All four players made an independent assessment and also noted 
the game number, their position (whether they played in the north, east, 
south, or west position), and their role (offense or defense). After all 
players had completed this task, they went on to the playing phase. The 
final score was recorded on a separate sheet. 

Results and Discussion 

Out of 112 games played, 63 (56%) ended up with contracts that were 
made.’ One way to assess how well players were calibrated is via a cali- 
bration curve, which is a graph showing the hit rate (percentage correct) 
for each probability response. Calibration curves were constructed by 

i In general, one should not use the percentage of fulfilled contracts as a criterion tar 
players’ quality. Expert players often bid intentionally a contract they know cannot be 
made, with the hope that they will lose less points than the other team may gain, if the other 
team will make the final bid. In addition, a low percentage of made contracts can also 
indicate outstanding defense. 
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grouping (over subjects and games) all the responses into 12 categories, 
in the ranges 0, .Ol-.lO, .ll-.20, .21-.30. . . , .70-.79, .80-.89., 90-99, 
and 1.00. 

The resulting calibration curve is shown in Fig. 1. A calibration curve 
by itself may not be an adequte presentation, because it does not take 
into account the relative weights, in terms of number of observations of 
each point. In particular, some points on the curve are based on a very 
small number of observations and hence constitute unreliable estimates. 
An attempt was therefore made to fit a model to the data. Given the 
inherent boundaries of 0 and 1 .O for confidence ratings, it is reasonable to 
consider a model that reflects these constraints. An approach that satis- 
fies these contraints, and which is adopted here, is to work with logistic 
linear models. 

Assume the frequencies of correct predictions f, for each confidence 
rating category c (c = 0, 1, 2, 3 . . . 11) to be independent binomial 
random variables with probabilities of being correct nC, mean confidence 
rating for category c to be r,, and number of observations it, . The proba- 
bility of being correct can then be described as 

exp (a + Pr,> lTc = 
1 + exp (a + @J (1) 

where OL and l3 play roles that are similar to “intercept” and “slope,” 

10 
X experiment 1 

0 experiment 2 

08 

mea-u probabtllty estimate 

FIG. 1. Calibration curves for expert (Experiment 1) and amateur (Experiment 2) players 
(numbers in parentheses indicate number of observations). 
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respectively. Expression (1) can also be written as a simpler linear model 
for the log-odds or logit of 1~, 

log, --3- [ 1 1 - lTTT, 
= a + pr, (2) 

In other words, the proportion of correct predictions of the outcome of a 
game is expressed as a function of the confidence ratings. The calibration 
curve based on such a model is presented in Fig. 2. It should be empha- 
sized that the models employed in the present paper are used for pur- 
poses of data analysis and no attempt should be made to interpret them 
otherwise (e.g., as a process model). 

All estimates and tests were obtained with the help of the GLIM com- 
puter program (Baker & Nelder, 1979), which applies the method of max- 
imum likelihood to generalized linear models (Nelder & Wedderburn, 
1972). To evaluate the model, I used the deviance which is a likelihood 
ratio measure of the difference between the models’ predictions and the 
actual data. Those readers who lack detailed knowledge of generalized 
linear interactive modeling may simply interpret the models in the more 
familiar framework of an ANOVA, and treat the deviance as representing 
the SS,, (sum of squares of the residuals) for a model. The deviance for 
the model was 10.74 which according to a x2 test (df = 9) is not signifi- 

08 08 

0 0 
0 0 0.2 0.2 0.L 0.L 0.6 0.6 0.8 0.8 10 10 

mean probabulity estimate mean probabulity estimate 

FIG. 2. Calibration curves for expert (Experiment 1) and amateur (Experiment 2) FIG. 2. Calibration curves for expert (Experiment 1) and amateur (Experiment 2) 
constructed from the predictions of the logit model. constructed from the predictions of the logit model. 

players 
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cant (p < .25). I thus conclude that the model is a reliable representation 
of the data. 

Inspection of both Figs. 1 and 2 suggests that the expert players in our 
sample are indeed very well calibrated. In particular, their confidence 
ratings almost coincide with the 45” line for the range of O-SO confidence 
ratings, and are slightly underconfident for the range of SO-. 100. 

The calibration curve shows averages across subjects and may conceal 
possible individual differences. In Fig. 3 the crosses depict, for each 
player separately, the mean probability estimate (across the 28 games 
played) against the corresponding percentage of contracts made. Despite 
the small number of observations for each player, represented in the 
figure by a point, it is apparent that most players are well calibrated, that 
is, most of the points lie relatively close to the 45” line. Taken together, 
the data suggest that the expert players in our sample were well cali- 
brated. However, to attribute the good calibration to expertise one would 
need a control group to show that poorer players are less well calibrated. 
Indeed, most calibration studies on experts have failed to employ such a 
control group. Before we further analyze the data of the expert players a 
second experiment is reported, which provides the desired control and 
serves as a base line to which experts’ performance can be compared. 

Method 
EXPERIMENT 2 

Subjects. The subjects were 28 members (14 pairs) of a sport club 

x experiment 1 
- oexperlment 2 

mean probobllaty estimate 

FIG. 3. Mean probability estimate (that the contract would be made) for each individual 
player plotted against actual percentage of contracts made. 
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which among other activities also organized a bridge tournament. Al- 
though all had been players for a long time, their frequency of playing 
was much lower than that of subjects in Experiment 1. None of them had 
ever participated in a national or international competition. 

Procedure and stimuli. Procedure and stimuli were identical to Experi- 
ment 1 with the following exceptions: There were 14 pairs of players and 
24 games (or decks). The 24 games were identical to the first 24 games 
played in Experiment 1. Since amateur players are slower, the last 4 
games of Experiment 1 were omitted, thus reducing the number of 
rounds in the tournament to six. Each player played all the 24 games (six 
rounds) and each game was played seven times. Total number of obser- 
vations was 672 (28 x 24). In all other respects the procedure was iden- 
tical to that of Experiment 1. 

Results and Discussion 

Of the 168 games played, 101 (60%) ended up with contracts that were 
made. The calibration curve for subjects in Experiment 2 is portrayed in 
Fig. 1 (circles). The predicted calibration curve resulting from fitting the 
logistic linear model (as in Experiment 1) is shown in Fig. 2. The fit of the 
model was even better than in Experiment 1, the deviance being equal to 
3.37, and the corresponding x2 test (df = 9) was nonsignificant 0, < .9>. 
The even smaller deviance of the model for the amateurs data is not sur- 
prising. It implies that amateurs conform closely to the nonoptimal cali- 
bration curve produced by the logit model. The logit model also offers a 
good representation of experts’ calibration except for the two ends of the 
curve (confidence ratings of 0 and 1.0) at which experts are almost per- 
fectly calibrated. It is these two extreme points that contribute to a some- 
what larger deviance for the experts’ data. 

As can be seen from Figs. 1 and 2, amateur players in Experiment 2 are 
poorly calibrated, especially when compared with the expert group. They 
are overconfident when assigning high confidence ratings and undercon- 
fident when assigning low confidence ratings. Inspection of individual 
players in Fig. 3 (circles) suggests that the large majority of players ex- 
hibit overall overconfidence in their probability assessments. One way to 
estimate the tendency to be overconfident or underconfident is to take 
the difference between the mean confidence rating and the corresponding 
percentage of contracts made, for each individual player. Averaging these 
differences across players we obtain a mean difference of - .046 (under- 
confidence) and .107 (overconfidence) for players in Experiments 1 and 
2, respectively. Since positive and negative differences may cancel each 
other, I also computed the absolute differences which indicate the dis- 
tance from perfect calibration (i.e., the 45” line). The mean absolute dif- 
ferences across subjects were .072 and .121 for Experiment 1 and 2, re- 
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spectively. This difference between the two groups of players was signifi- 
cant (t(42) = 2.13, p < .025). 

A major source of the difference between expert (Experiment 1) and 
amateur (Experiment 2) players lies in the frequency with which they use 
extreme confidence ratings. Table 1 shows the frequency distribution of 
confidence ratings for both Experiments 1 and 2. Confidence ratings of 
1.0 account for more than 29% of amateurs’ assessments and only for 
2.5% for experts. Moreover, for all the games in which experts assigned a 
rating of 1 .O the contract was always made, thus yielding a hit rate of 1 .O. 
In contrast, the corresponding hit rate for amateurs was only .78, that is 
in 22% of the games in which a confidence rating of 1 .O was assigned the 
contract actually failed. Both experts and amateurs use a 0 confidence 
rating (i.e., probability 1.0 that the contract will fail) approximately 
equally often. However, the corresponding hit rates in this case are .97 
and .81 for experts and amateurs, respectively. In summary, extreme 
confidence ratings are not only used by experts less frequently, they are 
also used more appropriately. 

One may be tempted to explain the above results by simply stating that 
experts are more conservative in their estimates. This explanation, how- 
ever, is untenable for two reasons; First, as already shown, the accuracy 
of experts is much better than that of amateurs on extreme ratings. A 
second argument that refutes the “conservatism” hypothesis is provided 
from another independent observation of the game. The vocabulary of 
bidding in bridge contains an option of doubling: If a player believes that 
the most recent bid of the opponents is unmakable he or she may double 
that contract. A “double” announcement is equivalent to saying that the 
player believes the probability of the contract being made to be very low 
indeed.* Doubles have benefits and costs: The benefit is that if the con- 
tract indeed fails, the defenders who doubled receive double the number 

TABLE 1 
FREQUENCYDISTRIBUTIONOFCONFIDENCERATINGSFOREXPERT(EXPERIMENT 1) AND 

AMATEUR(EXPEIUMENT 2) PLAYERS 

Confidence rating Experiment 1 

0 33 (7.4%) 
.Ol-.33 91 (20.3%) 
.34-.66 167 (37.3%) 
.67-.99 146 (32.5%) 

1.00 11 (2.5%) 

Total 448 (100%) 

Experiment 2 

37 (5.5%) 
35 (5.2%) 

183 (27.2%) 
221 (32.9%) 
196 (29.2%) 

672 (100%) 

* The doubles under discussion are only doubles on the final contract (i.e., do not include 
“information” doubles). 
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of points they would otherwise get. However, if the contract is neverthe- 
less made the offenders will gain more points than they would otherwise 
get. Hence, books on bridge usually advise players to use the double 
option with caution. Judging by the frequency of using the doubling op- 
tion, expert players were clearly less conservative: They used the option 
on 26 out of 112 games (23.2%) compared with the amateurs 17 out of 168 
games (10.1%). More important, only in one single case (4%) was the 
contract made despite the double announcement in the expert tourna- 
ment, compared to 8 games (47%) in the case of amateurs. Thus, experts 
used the doubling option more frequently and more accurately. 

There is another analysis that points out the differences between ex- 
pert and amateur players which may suggest some differences in the un- 
derlying cognitive processes of the two groups. Consider those games in 
which the player is relatively sure about the outcome. For instance, con- 
sider all the ratings of .80 and higher, which suggest that the player is 
quite confident that the contract will be made, together with all the 
ratings of .20 or less, in which the player is quite confident that the con- 
tract will fail. An additional classification can be made by separating 
ratings that were made by players from the offensive team from those 
made by the defensive team. Table 2 shows the frequency of observations 
in each of the four cells of a 2 x 2 table framed by ratings (above .80/ 
below .20) and role (offense/defense) for Experiments 1 and 2, respec- 
tively. A x2 analysis on the data from Experiment 1 yields no significant 
effects. However, for Experiment 2 there is a significant main effect of 
ratings (x2 = 215, p < .OOl) and a significant interaction (x2 = 5.17, p < 
.025).3 

The interaction is in particular revealing since it shows that amateurs 
tend to assign low probabilities more often when they are defending, that 
is, believing (or hoping) that the opponents will fail. In contrast, they 
assign a high probability of success to their own contracts more fre- 
quently than to their opponents. The lack of significant effects in Experi- 
ment 1 suggests that experts are able to assess probabilities more objec- 
tively without contaminating it with their own wishes. 

The choice of using confidence ratings of .80 and .20 as cutoff points 
for above .79 and below .21 as representing high confidence is somewhat 
arbitrary. However, an identical analysis performed on ratings of .90 and 
above and .I0 and below led to the same pattern and identical conclu- 
sions. 

Forecasting is intimately tied to decision making and should be evalu- 

3 Strictly speaking, such an analysis should be carried out for each individual player. 
Unfortunately, this was impossible due to the small number of observations (hands) for each 
player. However, an informal check suggests that the overall pattern holds also for the large 
majority of the individual players. 
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TABLE 2 
FREQUENCYOFHIGHANDLOWCONFIDENCERATINGSASAFUNCTIONOF 

ROLEOFPLAYERANDEXPERTISE 

Confidence ratings 

Experiment 1 Experiment 2 

Offense Defense Offense Defense 

.20 or less 50 39 20 35 

.80 or more 54 47 185 165 

ated within this context (Einhorn & Hogarth, 1982). Unfortunately, in the 
large majority of calibration studies, forecasting and decision making 
have been separated and the link between the two has been left vague. 
Since, as was argued earlier, forecasting the odds in bridge is a natural 
and integral part of the decision process, it is possible here to link these 
two aspects together. In particular, we may assume that any confidence 
rating less than SO implies that it is more likely that the contract will fail. 
A confidence rating higher than SO represents the belief that it is more 
likely that the contract will be made. Excluding all confidence ratings of 
50, we analyzed the relative frequency that contracts will be fulfilled or 
fail, as a function of whether the corresponding confidence ratings are 
above or below 50. These frequencies are given in Table 3. As can be 
seen, in each of the 2 x 2 tables (corresponding to each experiment) 
there is a clear first-order interaction suggesting that there is a high rela- 
tionship between a confidence rating being above or below .50 and the 
likelihood that the contract will finally be made (or fail). However, this 
relationship is not perfect. Players sometimes assign confidence ratings 
less than SO to games that are actually made, and confidence ratings 
higher than .50 to games that actually fail. The rate of such errors is much 
higher for the amateur subjects in Experiment 2. Using an iterative com- 
putation of the expected values (Fienberg, 1977), we obtained a signifi- 
cant second-order interaction of the 2 x 2 x 2 contingency analysis 
(confidence above or below .50 contract made or failed, Experiment 1 or 
2) with x: = 9.82 which is highly significant, p < .005. 

TABLE 3 
FREQUENCYOFMAKING(FAILING)ACONTRACTASAFUNCTIONOFCONFIDENCE 
RATINGSHIGHERORLOWERTHANSODJ~FOREACHOFTHETWO EXPERIMENTS 

Experiment 1 

Confidence Confidence 
below 50 above .50 

Experiment 2 

Confidence Confidence 
below 50 above SO 

Contracts made 40 188 226 30 326 356 
Contracts failed 132 37 169 71 140 211 

Total 172 225 101 466 
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The marginals in Table 3 shed additional light on the differences be- 
tween experts and amateurs. Note that for experts (Experiment 1) there 
is an almost perfect match between the relative frequency of using confi- 
dence ratings above or below SO and the corresponding proportions of 
contracts made or failed, which can actually be considered as the base 
rate. For the amateurs (Experiment 2) the proportion of ratings above SO 
is much higher than the corresponding proportion of contracts made, 
suggesting a bias of “optimism” (Weinstein, 1980) congruent with the 
overconfidence in the calibration curves. 

GENERAL DISCUSSION 

The game of bridge requires decisions that have to be made in the face 
of uncertainty. In fact, at least two different sources of uncertainty are 
inherent in the game: One stems from imperfect knowledge of the card 
distribution. The second source of uncertainty (not necessarily indepen- 
dent from the first one) is that players cannot know for sure how their 
opponents will play. More generally, they cannot judge in advance 
whether their own decisions or their opponents’ decisions are optimal; 
this is only known when the game has ended and all the cards are open. 
Different decisions by either the player or the opponents may often lead 
to different outcomes, and these have to be taken into account during the 
bidding phase. 

The results of the two studies reported here suggest that amateur 
players are inferior to expert players in taking both kinds of uncertainties 
into account during the game. As far as card distribution is concerned, 
the hit rate for 0 confidence ratings by amateur players is indicative. A 
confidence rating of 0 should imply that the player is absolutely confident 
that the contract will fail independent of how the offense plays it. Never- 
theless, amateur players erred in 19% of the cases in which they assigned 
a confidence rating of 0, compared to 3% errors made by experts. Further 
support for this observation is provided by the relatively low accuracy of 
amateurs when using the doubling option. A double should reflect the 
player’s belief that the card distribution is such that the contract is ex- 
tremely unlikely to be made, independently of how it is played. However, 
in more than 47% of the cases in which amateurs used the option of dou- 
bling the contract was nevertheless made. For experts, in contrast, the 
corresponding failures with doubling were a meager 2%. 

The other dimension of uncertainty, which amateurs often fail to appre- 
ciate, is due to lack of knowledge of how the playing phase (after the 
bidding) will develop. There are several possible decisions on each move 
of either the offense or the defense, so these cannot be predicted with 
certainty. Amateurs, however, assume implicitly that the play will de- 
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velop according to some optimal considerations (or at least what they 
consider optimal), and they do not leave room for variability (and hence 
larger uncertainty) of outcomes due to imperfections of players. This 
conjecture is supported by two related observations; one is the amateurs’ 
disproportionately frequent use of high compared to low confidence 
ratings (no significant difference for experts). The second observation 
concerns confidence ratings of 1.0. A close check of all the contracts to 
which amateurs assigned a 1 .O confidence suggests that as far as the card 
distribution is concerned the contract could theoretically have been made 
in almost all the cases given an optimal play (such a theoretical analysis 
can obviously be made only with perfect card certainty, i.e., when all 
cards are laid open). Nevertheless, in 22% of those cases the contract 
failed. Since all these contracts were theoretically possible, the failure is 
probably due to nonoptimal playing, a dimension which as we suggest is 
not sufficiently taken into account by amateurs. None of the games that 
received ratings of 1.0 by experts failed. 

An alternative explanation (that does not exclude the previous one) for 
the amateurs’ failure to properly evaluate the playing phase, and that can 
also account for their overconfidence, may be due to misconception of 
their own skill. Specifically, amateurs may know that they are error 
prone, but operate under the assumption that they will make fewer mis- 
takes than their opponents. A similar observation has been reported by 
Svenson (1981) who demonstrated that the majority of subjects in his 
sample regarded themselves as more skillful drivers compared with other 
subjects in the sample. Support for the above explanation is obtained in 
the present study from the observation concerning the difference in as- 
signing confidence ratings depending on whether a player takes the of- 
fensive or defensive role. For expert players there is no difference in the 
pattern of ratings depending on role. Amateurs, in contrast, show a sig- 
nificant tendency to assign higher ratings to contracts they are trying to 
make and lower ratings to contracts they are trying to defeat. Thus, ama- 
teurs exhibit a bias of “optimism” (Weinstein, 1980), whereas experts are 
able to make more objective judgments (that are detached from their mo- 
tives and goals). 

The above observations can account for the poor calibration of the am- 
ateur players, in particular the strong overconfidence shown in Fig. 1. At 
the same time, the exceptionally “good” performance of expert players 
suggests that good calibration in this task is possible. What requirements 
are needed to achieve this? 

To account for the experts “good” calibration, and the relatively poor 
performance of amateur players, consider the following hypotheses.“ As- 

4 Acknowledgments are made to C. Gettys for his invaluable contribution to this part of 
the discussion. 
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sume that the process of generating confidence ratings, or probability 
assessments, is composed of two subprocesses. 

One is the process of (semantic) inference where a person builds a 
mental model of a situation based on a knowledge base (usually derived 
from own experience), and uses this model to generate nonnumerical 
feelings of certainty (e.g., Beyth-Marom, 1982). For instance, these 
feelings can be expressed as the plausibility of various conflicting sce- 
narios that lead to different outcomes. The nature or quality of this pro- 
cess is mainly determined by two factors: One concerns the extent to 
which the initial mental model that is constructed is the proper one, and 
similarly that the appropriate inferential processes are employed. By a 
proper mental model I mean that a correct suitable “problem space” 
(Keren, 1984; Newell & Simon, 1972), for a given situation, is adopted. 
The second factor affecting this process concerns the amount of data, 
based on experience, that is fed into the mental model. 

The second subprocess is one in which these feelings of plausibility and 
uncertainty are translated into numerical estimates, that is, into probabil- 
ities. Let us further assume that for a subject to be “well calibrated” both 
processes must be “well tuned.” 

The results of the two studies reported in this article may now be inter- 
preted in light of the proposed framework. Specifically, it was suggested 
in the introduction that for tasks with highly related items (as is the case 
in bridge), a sufftcient amount of practice and feedback may eventually 
lead to good calibration. 

The critical aspect of relatedness of items is how a person learns from 
feedback. If items are unrelated, as is the case with calibration studies 
using general knowledge questions, then feedback cannot improve the 
first subprocess. A subject faced with a task composed of unrelated items 
may still learn a functional transformation used in the second subprocess, 
but this will lead only to very limited improvement and will not generalize 
to any other task. For instance, Lichtenstein and Fischhoff (1980) report 
two experiments, using general knowledge questions, in which the 
quality of people’s probability assessments improved through intensive 
training. However, as these investigators showed, there was very little if 
any generalization to several related probability assessment tasks. More- 
over, the improvement they obtained is technical in nature. Obviously, 
subjects who receive continuous feedback may soon find out that their 
probability assessments are too high or too low and change their assess- 
ments accordingly. I suggest, however, that such a change reflects at best 
a modification of the translation rule in the second subprocess, but leaves 
the first (and more important) subprocess unchanged. 

When items are related, the tuning of both subprocesses can (but do 
not necessarily have to) be improved by feedback. Physicians, for in- 
stance, and specialists in particular, deal with related items and suppos- 
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edly learn from feedback to elaborate their mental models and.improve 
their insights. Indeed, with experience they usually become better physi- 
cians. The reason that these physicians are nevertheless poorly cali- 
brated (e.g., Lichtenstein er al., 1982) is explained by the fact that ordi- 
narily making numerical probability estimates is not part of their job. 
Consequently their second subprocess remains untuned and this leads to 
poor calibration. Weather forecasters are one of the few groups that deal 
with related items, where both subprocesses are becoming well tuned as 
part of their job. 

The expert bridge players in Experiment 1 resemble in many respects 
the weather forecasters. They deal with highly related items, they have a 
lot of experience and practice with prompt and immediate feedback, and 
can thus tune successfully the two necessary subprocesses. Conse- 
quently, they exhibit good calibration similar to that shown in meteorolo- 
gists. 

Why was calibration of amateurs, despite their similar long experience, 
so different from that of the experts group? I propose that the reason is to 
be found mainly in the first subprocess. Bridge is an extremely complex 
game and, like chess (De Groot, 1965, 1966), can be played at different 
levels of expertise. These differences in expertise are reflected in dif- 
ferent perceptual strategies and different ways of processing information. 
Experts differ from amateurs not necessarily in the amount of practice 
per se, but rather by constructing an appropriate structural representa- 
tion of the problem that also taps the relevant variables (and their relative 
weights). Thus, expert bridge players employ, in the first subprocess, an 
inferential procedure that is better tuned, more sophisticated, and more 
sensitive to details as compared with amateur players. 

The above conclusions have important implications for training proce- 
dures for calibration (Lichtenstein & Fischhoff, 1980). They suggest that 
a general training method intended to improve calibration independently 
of the task is most likely to fail. A successful training program should be 
task-specific, and ensure that the training would lead to a clear and deep 
understanding of the structure and variables that are involved in the infer- 
ential subprocess, and at the same time provide sufficient cues and prac- 
tice for the second subprocess, namely the translation of knowledge into 
numerical probabilities. A procedure that takes those considerations into 
account should eventually lead to a calibration curve similar to the one 
produced by expert bridge players. 
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